
Urdu Handwriting Recognition Using
Deep Learning

Submitted by:
Shehryar Malik 2015-EE-167
M. Naeem Maqsood 2015-EE-168
Abdur Rehman Ali 2015-EE-188

Supervised by: Dr. Ubaid Ullah Fayyaz

Department of Electrical Engineering
University of Engineering and Technology Lahore

Urdu Handwriting Recognition Using
Deep Learning

Submitted to the faculty of the Electrical Engineering Department
of the University of Engineering and Technology Lahore

in partial fulfillment of the requirements for the Degree of

Bachelor of Science
in

Electrical Engineering.

Internal Examiner External Examiner

Director
Undergraduate Studies

Department of Electrical Engineering

University of Engineering and Technology Lahore

i

Declaration
We declare that the work contained in this thesis is our own, except where explicitly
stated otherwise. In addition this work has not been submitted to obtain another degree
or professional qualification.

Signed:
Date:

Signed:
Date:

Signed:
Date:

ii

Acknowledgments
This work would not have been possible without the support of several individuals and
organizations.

Foremost, we would like to express our gratitude to our supervisor Dr. Ubaid Ullah
Fayyaz for his guidance in this project. We also thank our co-supervisor Dr. Kashif
Javed for his support.

We would also like to thank Mrs. Qurat-ul-Ain Akram of the Center for Language
Engineering for her continuous support throughout the project. Apart from providing
us with space on the Center’s premises, she also arranged for the Center to provide
funding for this project.

In order to prepare the dataset for this project, we contacted several schools and colleges.
We are indebted to all those who agreed to help us in this regard.

Last, but not the least, our sincerest gratitude to all those individuals and organizations
who have helped ensure high quality Open CourseWares (OCWs) for all those who want
to study artificial intelligence, in general, and deep learning, in particular. Had it not
been for them, we would not even have had the technical expertise to begin with this
project. As such, this thesis is dedicated to them.

iii

For those who create and ensure OCWs for AI enthusiasts

iv

Contents

Acknowledgments iii

List of Figures viii

List of Tables ix

Abbreviations x

Abstract xi

1 Introduction 1

2 Supervised Learning for Classification 2
2.1 Probabilistic Classifiers . 2
2.2 The Cross-Entropy Function . 4
2.3 Sequence-to-Sequence Problems . 4

2.3.1 Connectionist Temporal Classification (CTC) 5
2.3.2 Decoding Strategies for CTC . 5
2.3.3 Encoder-Decoder Architecture . 6

2.4 Training Classifiers . 6
2.4.1 Gradient Descent . 6
2.4.2 Momentum . 7
2.4.3 Adagrad . 7
2.4.4 Adam . 7

3 Artificial Neural Networks 8
3.1 A Single Neuron . 8
3.2 Stacking Neurons . 9
3.3 Training Neural Networks . 10
3.4 Recurrent Neural Networks (RNNs) . 10
3.5 Convolutional Layers . 12
3.6 Pooling Layers . 13
3.7 Techniques Used for Training Neural Networks 13

3.7.1 L1 and L2 Regularizations . 13
3.7.2 Dropout . 14
3.7.3 Early Stopping . 14
3.7.4 Restoring the Best Model . 14
3.7.5 Decaying the Learning Rate . 14

v

Contents vi

3.7.6 Bucketing . 15
3.7.7 Xavier Weight Initialization . 15
3.7.8 Batch Normalization . 15
3.7.9 Layer Normalization . 15
3.7.10 Residual Connections . 16
3.7.11 Clipping Gradients . 17

4 Encoder-Decoder Architectures 18
4.1 Implementation Using Recurrent Neural Networks 18
4.2 Adding an Attention Mechanism . 20

4.2.1 Global Attention . 20
4.2.2 Local Attention . 21

5 N-Gram Language Models 23
5.1 The N-Gram Language Model . 23
5.2 Perplexity . 23
5.3 Smoothing . 24

5.3.1 Laplace (Add-One) Smoothing . 24
5.3.2 Backoff and Interpolation . 24
5.3.3 Kneser-Ney Smoothing . 24

6 Optical Character Recognition Systems 26
6.1 Preprocessing . 26
6.2 Segmentation . 26
6.3 Feature Extraction . 27
6.4 Recognition . 27
6.5 Post Processing . 27

7 Dataset Collection 28

8 Experiments 30
8.1 Generating Labels . 30

8.1.1 Character-Based Approach . 30
8.1.2 Ligature-Based Approach . 30

8.2 Accuracy Metric . 31
8.3 Preprocessor . 31
8.4 Classifiers . 31

8.4.1 CNN-RNN-CTC Architecture . 31
8.4.2 Language Model . 31
8.4.3 Encoder-Decoder Architecture . 32

8.5 Results . 32

9 Deployment 34

10 Conclusion and Future Work 35

A Configuration Files 36

Contents vii

A.1 CNN-RNN-CTC Architecture . 36
A.2 Encoder-Decoder Architecture . 37

B Demonstrating Attention 39

C Character Frequencies 41

D Dataset Preparation Process 43

List of Figures

3.1 A Single Neuron . 8
3.2 A Two-Layer Neural Network . 9
3.3 A Recurrent Neural Network . 11
3.4 The Recurrent Neural Network Unrolled 11
3.5 Demonstrating Overfitting . 14

4.1 The Encoder-Decoder Architecture . 18
4.2 Implementation of the Encoder-Decoder Architecture Using Recurrent

Neural Networks . 19

8.1 The System During the Training Process 30
8.2 Training Plots . 32
8.3 Visualization of the Attention Mechanism 33

9.1 The Final System . 34

D.1 How the Dataset was Prepared . 43

viii

List of Tables

3.1 Some Common Activation Functions . 9

7.1 Statistics of Images in the Dataset . 29

8.1 Number of Trainable Parameters . 31
8.2 Results . 32
8.3 The CNN-RNN-CTC Architecture on the Test Set 33
8.4 The Encoder-Decoder Architecture on the Test Set 33

C.1 Character Frequencies in Training and Test Sets Key: initial: the first
character of its ligature; final: the final character of its ligature; middle:
between the first and final characters of its ligature; isolated: a one-letter
ligature; hijja (aerab): associated with some character that is part of a
ligature (usually separately written either on the top or the bottom of the
character) . 41

C.1 Character Frequencies in Training and Test Sets (Continued) 42

ix

Abbreviations

OCR Optical Character Recognition

ANN Artificial Neural Network

NN Neural Network

CNN Convolutional Neural Network

RNN Recurrent Neural Network

BRNN Bidirectional Recurrent Neural Network

LSTM Long Short Term Memory

BLSTM Bidirectional Long Short Term Memory

MDLSTM Multi-Dimensional Long Short Term Memory

CTC Connectionist Temporal Classification

CE Cross Entropy

ReLU Rectified Linear Unit

LM Language Model

x

Abstract

Optical character recognition aims to recognize text in images. Recent breakthroughs in

deep learning have revolutionized OCR systems for languages such as English. However,

their impact on Urdu has been minimal. This thesis aims to bridge this gap. We develop

a new dataset comprising of around 15, 000 images of Urdu handwritten text lines and

use it to train different deep learning architectures. The first is the standard CNN-

RNN architecture that optimizes the Connectionist Temporal Classification function.

We also incorporate a trigram language model with this architecture to further improve

performance. The second architecture is an attention-based encoder-decoder network

that optimizes the cross-entropy function for each character in the transcription. We

achieve accuracies of 91.51% and 90.07% on the two architectures respectively. These

results are comparable to the state-of-the-art results on English datasets.

Chapter 1

Introduction

Consider the problem of reading text written on a piece of paper. The human mind
accomplishes this task through a series of steps. It might begin by first identifying
which parts of the paper contain text. Next, it would decide where to start reading
from. To do that, it would also have to recognize the fact that the paper might contain
many lines and that lines needs to be read individually in a certain sequential order. If
a word is not written clearly then the mind knows to use previous and future contexts
of the text to try to identify it. However, if the text is just a collection of random words,
then the mind recognizes that and understands that it should not take into account the
context. If the text is multilingual, then the mind also has to decide which parts of it
belong to which language. It also needs to take into account cases where some of the
languages are read left-to-right and the others right-to-left. In short, several complex
decisions need to be made which also require an understanding of the text.

Recent breakthroughs in the field of machine learning, especially in the form of deep
learning, have made systems that can read text documents more realizable than ever
before. Apart from bringing artificial intelligence one step closer to human intelligence,
these optical character recognition systems can assist people in a wide range of affairs. For
example, state institutions can use these systems to digitize old records, thus sparing
them the need of large storage areas. Similarly, libraries can easily create electronic
versions of any old books they might have, thus preserving them for eternity.

Urdu is the national language of Pakistan and is spoken by over a 100 million people [1].
It is written from right to left using the Persian script and has 58 letters [2]. Characters
physically join together to form ligatures. Each word contains one or more ligatures.
The shape of each character varies according to its position in the ligature. Unlike
English, no space is inserted between words in Urdu.

This thesis aims to develop an optical recognition system for Urdu using deep learning.

1

Chapter 2

Supervised Learning for
Classification

Machine learning offers a powerful set of algorithms to analyze and model data. These
algorithms can be used in a variety of settings. One such setting is supervised learning.
Concretely, in supervised learning we assume a training set Strain = {(x(i), y(i)); i =

1, ...,m} drawn from some distribution Dx,y. Each input-output pair (x(i), y(i)) is referred
to as a training example. All training examples are assumed to be independent and
identically distributed (i.i.d.). Supervised learning aims to find a function f that maps
inputs x(i) to their corresponding outputs y(i).

We define the training error ϵ̂train to be the error in f on the training set. However, we
are usually more interested in the error in f on any example drawn from the distribution
Dx,y. To that end, we define ϵ to be the generalization error in f on Dx,y. We may
approximate the generalization error by testing f on a test set Stest also drawn from
Dx,y. We denote the error on this set as ϵ̂test. Note that it is essential that f is only
evaluated on the test set at the very end of the supervised learning process (when no
more changes to f are to be made). In order to approximate the generalization error of
f during the supervised learning process, a third set, known as the validation set and
denoted with Sval, is drawn from Dx,y. The errors are sometimes also referred to as
losses.

For the purpose of this thesis we shall assume a discrete-valued setting for the outputs y
(we will drop the superscript i when there is no fear of ambiguity). Specifically, we shall
assume that y ∈ {0, ..., |V | − 1}. The problem of supervised learning, thus, becomes of
classifying inputs x into their correct classes. As such, we shall refer to f as a classifier.

2.1 Probabilistic Classifiers
There are many approaches to setting up a classifier. One approach involves having it
output the correct label y for each input x. Such a classifier is known as a discriminant
function. However, we may also use a probabilistic approach where we have the classifier

2

Chapter 2. Supervised Learning for Classification 3

output probabilities with which x belongs to each of the |V | classes. We may then select
the most probable class.

Denote the parameters of a probabilistic classifier with θ. Then from the assumption
that all training examples are i.i.d. it follows that:

p(Strain|θ) =
m∏
i=1

p(y(i)|x(i),θ) (2.1)

which, using Bayes’ rule, gives:

p(θ|Strain) =
p(Strain|θ)p(θ)

p(Strain)
(2.2)

Each class probability Ck can then found by integrating over all possible values of θ:

P (Ck|x, Strain) =

∫
θ
p(Ck|x,θ)p(θ|Strain) (2.3)

However, in practice, θ is very high dimensional and consequently the integral in Equa-
tion 2.3 becomes intractable. In such cases, it is common to approximate it using a
single value of θ. ∫

θ
p(Ck|x,θ)p(θ|Strain) ≈ p(Ck|x,θMAP) (2.4)

where:
θMAP = argmax

θ
p(θ|Strain) (2.5)

This is known as the maximum a priori (MAP) approximation. We obtain the following
after substituting Equation 2.2 in the equation above:

θMAP = argmax
θ

p(Strain|θ) (2.6)

where we have assumed a uniform prior on the values of θ and noted that θMAP is
independent of p(Strain).

Substituting Equation 2.1 into Equation 2.6 gives:

θMAP = argmax
θ

m∏
i=1

p(y(i)|x(i),θ) (2.7)

We can, therefore, find θMAP by minimizing the following objective function with respect
to θ:

O = − ln
m∏
i=1

p(y(i)|x(i),θ) = −
m∑
i=1

ln p(y(i)|x(i),θ) (2.8)

Note that the logarithm is a monotonic function and consequently minimizing a function
is the same as minimizing its logarithm.

Chapter 2. Supervised Learning for Classification 4

2.2 The Cross-Entropy Function
Let q(x(i))j denote the actual probability of the input x(i) belonging to the class j. In
the case when x(i) can only belong to one class (denoted with k):

q(x(i))j =

1 if j = k

0 otherwise
(2.9)

Also, let p(x(i))j denote the probability a classifier assigns to class j for the input x(i).
Then the cross-entropy objective function is defined as:

H = − ln
m∏
i=1

|V |∑
j=1

q(x(i))jp(x
(i))j (2.10)

For the special case in Equation 2.9, Equation 2.10 will reduce to Equation 2.8. This
is because the inner summation will reduce to p(x(i))k which is equal to p(y(i)|x(i),θ).
Here, y(i) is the true class of x(i) (denoted by k above).

Usually, the outputs of a classifier are real-valued numbers (without any restrictions
on their range). The softmax function is often used to convert these numbers into
probabilities:

softmax(oj) =
eoj∑|V |
k=1 e

ok
(2.11)

where oj denotes the probability that the classifier assigns to class j for some input.

For the remainder of this thesis, we shall assume that the cross-entropy function first
converts the classifier’s outputs to valid probabilities through the softmax function and
then applies the actual cross-entropy function.

2.3 Sequence-to-Sequence Problems
Consider the optical character recognition problem outlined in Chapter 1. Let the image
be the input to a classifier and the transcription be the desired output. Let x ∈ RH×W

be the image matrix. We shall denote its ith column by xi and the jth element in the ith
column by xij . Also, let y denote a vector [y1, y2, ..., yL] whose ith element corresponds
to the ith character of the transcription. Note that each yi ∈ {1, ..., |V |} (we assign
appropriate ids to each of the |V | characters).

In this example, both the input and the output can be thought of as sequences. The
input is a sequence of vectors x1,x2, ...,xW whereas the output is a sequence of character
ids. Such problems are referred to as sequence-to-sequence problems.

The main challenge in sequence-to-sequence problems is usually that of alignment. In
the example above, it may not be easy to divide the image into segments each with
only one character. In this section, we describe two approaches to solving the alignment
problem.

Chapter 2. Supervised Learning for Classification 5

2.3.1 Connectionist Temporal Classification (CTC)

The CTC approach [3] defines a new so-called blank token in the vocabulary and assigns
it the id |V | + 1. We denote this extended vocabulary with V ′. For each element in
the input sequence x1,x2, ...,xT , the classifier predicts a probability for observing each
character in V ′. Therefore, if ot denotes the output of the classifier for input xt, then
otj denotes the probability of observing the character j for that input. Let L′T be the
set of all possible sequences of length T over the vocabulary V ′. Then, for any path
π ∈ L′T :

p(π|x(i),θ, Strain) =
T∏
t=1

o
(i)
tπt

(2.12)

where πt denotes the tth element in π. Note that we assume that the labels at different
time steps are conditionally independent of each other (where we are conditioning on x

and Strain).

Let us define a many-to-one map β : L′T 7→ L6T . The β function maps each π ∈ L′T

(which is of length T) to a sequence of length less than or equal to T . It does so by
first merging all repeated characters and then deleting the blank tokens. For example,
[aa − abcb − −d] will map onto [aabcbd]. From this example, it is clear that the blank
token is useful because it (i) separates two consecutive instances of the same character,
and (ii) can represent a gap in the input sequence (e.g. the white space between two
characters).

Note that more than one path in L′T may be collapsed onto the same sequence l ∈ L6T

by the β function. As all paths are mutually exclusive (only one can occur at a time),
we have:

p(l|x(i),θ, Strain) =
∑

π∈β−1(l)

p(π|x(i),θ, Strain) (2.13)

Substituting Equation 2.13 into Equation 2.8 will give us an objective function, that
when minimized will yield θMAP . However, the problem with Equation 2.13 is that
for a given y we would have 2T−|y|2+|y|(T−3)3(|y|−1)(T−|y|)−2 possible paths. Comput-
ing probabilities for each of these paths would be too time-consuming. [3] presents a
dynamic-programming algorithm, that recursively evaluates the RHS of Equation 2.13.

Classifiers having recurrent connections best work for CTC as they allow it to condition
on previous predictions at each time step.

2.3.2 Decoding Strategies for CTC

In the CTC approach, the classifier outputs a probability distribution over the entire
vocabulary for each time step. The goal of decoding is to find the sequence that has
the highest probability. Here, we distinguish between a path and a sequence. A path
is simply constructed by selecting one character at each time step while a sequence is
what we get after applying the β function on a path.

Chapter 2. Supervised Learning for Classification 6

The best path decoding (greedy search) selects the most probable character at each time
step. However, it is not guaranteed to find the most probable sequence.

In contrast, beam search keeps track of k sequences. At each time step, it first extends
each path with all of the characters in the vocabulary and then chooses the paths that
correspond to the top k sequences with the highest probability.

In some cases, it may also be desirable to select the most probable sequence that satisfies
some constraints (such as language constraints). To that end, [4] proposes a token-
passing algorithm.

However, in tasks such as handwriting recognition, constraining the outputs may not
be a good idea. Firstly, because it is usually not possible to create a dictionary that
contains all words in a certain language. Secondly, new words get created often and
hence we would need to regularly update our dictionary Thirdly, we might have to deal
with cases where the handwritten text might not contain any valid words (for example
a random string of characters and numbers).

To solve this problem, [5] proposes a word-based language model that only partially takes
into account a language model during decoding. [6] proposes an alternative approach
to handle this problem by only constraining words in the output by a dictionary, while
simultaneously allowing for random strings of special characters and numbers.

2.3.3 Encoder-Decoder Architecture

The idea behind an Encoder-Decoder architecture is to have the classifier handle the
alignment problem internally. We present a detailed discussion on this approach in
Chapter 4.

2.4 Training Classifiers
Up till now, we have only discussed how to set up an objective function, that when
minimized yields the desired θMAP . In most cases, the objective function does not have
a closed-form solution. Instead, we have to resort to numerical methods. In this section,
we present the gradient descent method and some of its variants.

In the following discussion, θ ∈ Rd denotes the parameters of the classifier and O denotes
the objective function we are trying to minimize.

2.4.1 Gradient Descent

The gradient descent method performs the following update:

θ := θ − α∇θO(θ) (2.14)

i.e. it repeatedly takes a step towards the minimum point. α controls the step size and
is known as the learning rate. There are several ways of applying gradient descent: (i)
vanilla gradient descent computes O(θ) for the entire training set and then applies the

Chapter 2. Supervised Learning for Classification 7

update rule, (ii) stochastic gradient descent computes O(θ) for one example, performs
the update rule and then moves onto the next example, and (iii) mini-batch gradient
descent divides the training data into minibatches, performs the update for one minibatch
and then moves onto the next one.

However, there are several problems associated with this simple version of gradient
descent (see for e.g. [7] and[8]). We now discuss some variants of gradient descent that
try to address these challenges.

2.4.2 Momentum

At time step t, momentum [9] first computes:

vt = γvt−1 + α∇θtO(θt) (2.15)

where γ is a (scalar) hyperparameter and then performs the update:

θt+1 = θt − vt (2.16)

2.4.3 Adagrad

Adagrad [10] uses the following update rule:

θ := θ − α√
G+ ϵ

�∇θO(θ) (2.17)

where ϵ is a smoothing constant (usually of the order of 10−8) and G ∈ Rd×d is a
diagonal matrix whose each entry i, i is the sum of the squares of the gradients of θi up
till this point. Here, θi denotes the ith element of θ and not its value at the ith time
step (as is used elsewhere).

2.4.4 Adam

At time step t, Adam [11] first computes:

mt = β1mt−1 + (1− β1)∇θO(θt) (2.18)

vt = β2vt−1 + (1− β2) (∇θO(θt))
2 (2.19)

where β1 and β2 are hyperparameters and then applies bias correction:

m̂t =
mt

1− βt
1

(2.20)

v̂t =
vt

1− βt
2

(2.21)

and finally performs the following update:

θt+1 = θt −
α√

v̂t + ϵ
m̂t (2.22)

Chapter 3

Artificial Neural Networks

Artificial neural networks are a class of algorithms in machine learning that are inspired
by the structure and function of the human brain. In this chapter, we present an overview
of some of these algorithms.

In the following discussion we shall assume a supervised learning setting where we define
S = {(x(i), y(i)); i = 1, ...,M} to be a set of inputs x and corresponding labels y. When
x and y are multi-valued we shall denote their jth value with the subscript j. We shall
also assume a probabilistic setting, where we output a probability for each of the |V |
classes in our vocabulary.

3.1 A Single Neuron
Figure 3.1 shows a single neuron which is the basic building block of a neural network.
The scalars w and b are known as the weight and bias of the neuron. The non-linear

Figure 3.1: A Single Neuron

function f is called as the activation function. Table 3.1 summarizes some of the most
common activation functions (see for e.g. [12] for a more detailed discussion on different
activation functions and their advantages and disadvantages).

8

Chapter 3. Artificial Neural Networks 9

Sigmoid 1/(1 + exp(−x))

tanh tanh(x)
Rectified Linear Unit (ReLU) max(0, x)
Leaky ReLU max(0.01x, x)

Table 3.1: Some Common Activation Functions

3.2 Stacking Neurons
Neurons can be stacked together to form a single layer, known as a feed-forward or a
fully-connected layer. A typical neural network has many of these layers. Figure 3.2
shows a two-layer neural network (the input layer is usually not counted as a layer).

Figure 3.2: A Two-Layer Neural Network

The output layer usually does not have an activation function associated with it. This
is because the outputs of this layer are usually interpreted as class scores (where the oj

neuron outputs a score/probability for class j).

We may represent a neural network using vectors, matrices and tensors. This will help
keep the notation clean for larger neural networks. Specifically, let x denote the input
vector [x1, ..., xN]T and o the output vector [o1, ..., o|V |]

T . Let W be the weight matrix
of some layer whose ij entry denotes the weight from the input neuron i to the layer’s
jth neuron. Finally, define b to be the bias vector of a layer whose ith entry denotes the
bias for the layer’s ith neuron. Using this notation, we may express the neural network
in Figure 3.2 as:

o = W T
o f(W T

h x+ bh) + bo (3.1)

where f is the activation function for the hidden layer and the subscripts h and o denote
the hidden and output layers respectively.

Chapter 3. Artificial Neural Networks 10

3.3 Training Neural Networks
Let O denote the objective function that we are trying to optimize for a neural network.
Training a network involves two processes: a forward pass and a backward pass.

In the forward pass, we feed the network some input and calculate its output. Next, the
objective function takes in this output and produces a scalar, known as the loss of the
network. The weights are usually initialized randomly.

For the backward pass, we calculate the derivative ∂O
∂oj

. This is the derivative of the
objective function with respect to the output of jth neuron in the output layer. We
then use the chain rule to calculate the derivative of the objective function with respect
to the other weights of the network. We shall use the following notation from now on:

δj :=
∂O

∂wj
(3.2)

where j is some unit in the network. δ is often referred to as the error signal received
by the network. For some weight wij in the last hidden layer we have:

δwij =

|V |∑
k=1

∂O

∂ok

∂ok
∂wij

(3.3)

The backward pass is also known as backpropagation.

Usually, some form of minibatch gradient descent is used for training neural networks.
We define an iteration as the process of feeding one minibatch to the network and using
it to perform an update on the network’s parameters. Furthermore, we define an epoch
as the process of feeding all minibatches in the training data to the network one-by-one.
Therefore, one epoch is comprised of many iterations. Training usually lasts several
epochs. The network is periodically evaluated on a validation set after a certain number
of epochs.

3.4 Recurrent Neural Networks (RNNs)
A recurrent neural network is a type of neural network that uses cyclical connections
to maintain a so-called hidden state. At each time step, the RNN is fed in some input.
The hidden state allows the RNN to condition the output for this input on all previous
inputs that it has seen. Figure 3.3 shows an RNN.

Assume that each xj ∈ RD. At each time step t, the output (which is also the hidden
state) of an RNN is given by:

ht = f (Whhht−1 +Whxxt + b) (3.4)

where Whh ∈ Rd×d, Whx ∈ Rd×D and b ∈ Rd are the parameters of the RNN and f

is a non-linear activation function. Here, d is the desired dimensionality of the output

Chapter 3. Artificial Neural Networks 11

Figure 3.3: A Recurrent Neural Network

(ht ∈ Rd). Sometimes d is also referred to as the number of units of the RNN.

Figure 3.4 unrolls an RNN cell over different time steps (here T = N).

Figure 3.4: The Recurrent Neural Network Unrolled

The output of the RNN is sometimes written as H = [h1, ...,hT]. Note that H ∈ RT×d.

The gradient of the objective function O with respect to W is given by:

∂O

∂W
=

T∑
t=1

∂Ot

∂W
(3.5)

where Ot = O[ft(ht)] for some appropriate function ft and:

∂Ot

∂W
=

t∑
k=1

∂Ot

∂ht

∂ht

∂hk

∂hk

∂W
(3.6)

and:
∂ht

∂hk
=

t∏
j=k+1

∂hj

∂hj−1
(3.7)

Note that we have assumed that O =
∑

tOt.

However, there are two major problems with RNNs that prevent it from learning long-
term dependencies: (i) information morphing, and (ii) vanishing and exploding gradi-
ents.

Chapter 3. Artificial Neural Networks 12

Information morphing refers to the fact that an RNN will always morph (change) state
even in the absence of external inputs. Let g(h) denote an RNN as a function of its
hidden state only. For g(h) = h to be true, g must be an identity function. However, an
identity function is linear in nature whereas RNNs are non-linear functions. This means
that an RNN will always morph state.

Vanishing and exploding gradients refer to fact that for long sequences the RHS of
Equation 3.7 either approaches 0 or ∞. See [13] for a detailed proof of this.

In order to deal with the problem RNNs have in learning long-term dependencies, [14]
propose the Long-Short Term Memory (LSTM). The LSTM maintains two states at
each time step: a hidden state ht and a cell state ct. There are many variants of the
LSTM. We reproduce the equations of one such variant [15]:

it = σ (Wxixt +Whiht−1 +Wcict−1 + bi) (3.8)

ft = σ (Wxfxt +Whfht−1 +Wcfct−1 + bf) (3.9)

ct = ftct−1 + it tanh (Wxcxt +Whcht−1 + bc) (3.10)

ot = σ (Wxoxt +Whoht−1 +Wcoct + bo) (3.11)

ht = ot tanh(ct) (3.12)

where σ is the logistic sigmoid function and it, ft and ot are the input, forget and output
gates respectively.

The output of a RNN is only conditioned on the previous inputs. In order to condition it
on future inputs also, a bidirectional RNN (BRNN) [16] is often used. Specifically, two
RNNs are employed. Each begins traversing the sequence from a different end. Denote
the RNN function with f . Then, the output H is found by concatenating −→H and ←−H ,
where:

−→
H = fforward([x1, x2, ..., xT]) (3.13)
←−
H = fbackward([xT , xT−1, ..., x1]) (3.14)

Bidirectional LSTMs (BLSTMs) simply replace the RNN cell in BRNNs with a LSTM
cell [17]. Similarly, mutli-dimensional RNNs further extend the concept of BRNNs by
traversing the input from multiple directions [18].

3.5 Convolutional Layers
Let x ∈ RH×W×C be the input to a convolutional layer. When the inputs are images,
H and W denote their height and width respectively and C denotes the number of color
channels (usually 3, corresponding to red, green and blue). Let F ∈ RH

′×W
′

denote a
filter (also called as a kernel) of height H

′ and width W
′ . The convolution layer applies

the following operation on each color channel of the input separately (the kth channel

Chapter 3. Artificial Neural Networks 13

being denoted with xk):

yk(i, j) = (xk ∗ F)(i, j) =
∑
n1

∑
n2

x[i− n1, j − n2]F [n1, n2] (3.15)

The final output is given by:
y =

∑
k

yk (3.16)

Note that y is a rank 2 tensor. Using more than one filter at each layer gives several of
these rank 2 tensors, which can then be stacked on top of one another. This produces
a rank 3 tensor. See Chapter 9 of [19] for a more detailed explanation on convolutional
layers.

3.6 Pooling Layers
Pooling layers are used to reduce the dimensionality of inputs. They are many variants
of pooling. One of the most common type is the max pooling which divides inputs
into different (possibly overlapping) blocks and then simply replaces each block with the
highest number in that block. Chapter 9 of [19] and the references therein provide a
more detailed explanation of pooling.

3.7 Techniques Used for Training Neural Networks
Training neural networks within reasonable time is usually tricky. One of the reasons
for this is overfitting. Consider Figure 3.5. Note that initially both the training and
validation losses decrease. However, after a certain point (specifically, to the right of the
dashed line), the training loss continues to decrease while the validation loss starts to
increase. This phenomenon is known as overfitting. Overfitting indicates a high variance
in the network (see section 14.6 of [20] for a more detailed discussion on this).

In this section, we outline some of the techniques used to combat overfitting. We also
discuss some other techniques that are used to help networks converge faster.

3.7.1 L1 and L2 Regularizations

L1 regularization adds:
λ
∑
i

||Wi|| (3.17)

and L2 regularization adds:
λ
∑
i

||Wi||2 (3.18)

to the objective function. Here, the W ’s are the parameters (usually excluding the
biases) of the network and λ control how much of regularization to use (see Chapter 7.1
of [19] for more details).

Chapter 3. Artificial Neural Networks 14

Figure 3.5: Demonstrating Overfitting

3.7.2 Dropout

For any given layer in the network, dropout [21] randomly sets some of its inputs to zero
with some probability p. This adds some noise to the network and helps prevent overfit-
ting. Note that dropout is only applied during training and disabled during evaluation
and inference.

3.7.3 Early Stopping

Suppose that a network is evaluated on some validation set after each epoch. We may
terminate training if there is no further improvement on the validation set for a certain
number of epochs. This is known as early stopping.

3.7.4 Restoring the Best Model

Suppose that a network gives a certain accuracy on the validation set at the end of
some epoch. Now suppose that the difference between this accuracy and the accuracy
at the end of the previous epoch is greater than some number. We may then discard
this epoch completely and restart training from the last epoch (i.e restore the last best
model). This has the intuition of forcing the network to take the best path towards
convergence.

3.7.5 Decaying the Learning Rate

This technique decays the learning rate as training progresses. This has the intuition
of making the network take smaller steps as it approaches the minimum point, thus
reducing the probability that the network steps over it.

Chapter 3. Artificial Neural Networks 15

3.7.6 Bucketing

Bucketing deals with the problem of variable length sequences in the input. Usually,
because of programming constraints the inputs in a particular minibatch need to be of
the same length. One way of solving this problem is to pad all sequences to the maximum
sequence length in the input data. However, this results in increased training times. A
better approach is to divide the input data into a discrete number of buckets. Inputs
that are closer to each other in terms of their sequence lengths are grouped together in
one bucket. Each input is then only padded to the maximum sequence length in the
bucket they belong too. Note that this means that all inputs in a minibatch belong
to the same bucket. Bucketing allows minibatches with smaller sequence lengths to be
processed faster.

3.7.7 Xavier Weight Initialization

The weights of a network are usually initialized randomly. In practice, the Xavier
initialization [22] is known to result in faster convergences. For weights in the ith layer
the Xavier initialization uses a normal distribution with zero mean and the following
variance:

Var = 2

ni + ni+1
(3.19)

where ni and ni+1 are the number of input and output neurons in the ith layer.

3.7.8 Batch Normalization

For a layer with H-dimensional output o = [o1, o2, ..., oH], batch normalization [23]
computes:

ôk =
ok − E[ok]√

Var[ok]
(3.20)

and then finds:
zk = γkôk + βk (3.21)

for each k. Here, γk and βk are parameters that are to be jointly learned with the rest of
the model, During training E[ik] and Var[ik] are computed using the minibatch at that
iteration only. During evaluation and inference, these values are calculated using the
entire training set. While [23] assumes a setting where batch normalization is applied
at the beginning of the layer (to its input) we shall assume that batch normalization
is applied at the end of the layer (as presented above). This will fit in better with the
discussions hereafter (including that in the next subsection).

3.7.9 Layer Normalization

For a layer with H-dimensional outputs o = [o1, o2, ..., oH], layer normalization [24] first
computes:

ôk =
ok − µ

σ
(3.22)

Chapter 3. Artificial Neural Networks 16

where:

µ =
1

H

H∑
j=1

oj (3.23)

σ =

√√√√ 1

H

H∑
j=1

(oj − µ)2 (3.24)

and then applies Equation 3.21. Note that unlike batch normalization, layer normal-
ization does not depend upon the minibatch size. Also, layer normalization does not
distinguish between the training and the evaluation and inference processes.

For recurrent neural networks, for each time step t we first compute:

at = Whhht−1 +Whxxt + b (3.25)

as in Equation 3.4, then calculate:

µt =
1

H

H∑
i=0

ait (3.26)

σt =

√√√√ 1

H

H∑
j=0

(ait − µt)2 (3.27)

where ait denotes the ith element of a and H is the number of units of the RNN and
finally find the next hidden state:

ht = f

[
g

σt
◦ (at − µt) + b

]
(3.28)

where g and b are defined to be of the same dimension as ht, ◦ denotes the element-wise
vector product (also known as the Hadamard product) and f is the RNN’s non-linear
activation function.

3.7.10 Residual Connections

Let g(x) denote the output of some layer g in a network. Residual connections [25]
directly connect the input of the layer g with its output. The output of a layer with
residual connections is given by:

z = g(x) + x (3.29)

When g(x) and x are of different dimensions, an appropriate affine transformation on x

may be used:
z = g(x) +Wrx (3.30)

where Wr is to be jointly learned with the rest of the network. Residual connections
allow very deep networks to be trained efficiently by countering the so-called degradation
problem (see for e.g. [25]).

Chapter 3. Artificial Neural Networks 17

3.7.11 Clipping Gradients

In Section 3.4, we discussed the exploding gradients problem. One way to prevent
gradients from exploding is to scale them down whenever a gradient norm exceeds a
certain threshold [13].

Chapter 4

Encoder-Decoder Architectures

Figure 4.1 shows the concept behind the Encoder-Decoder architecture. The encoder
takes in an input and encodes it in some way. The decoder takes this new (more useful)
representation of the input and produces some output. This output is fed into some
objective function. Gradients of the output of the objective function with respect to the
parameters of both the encoder and decoder are calculated and used to update them
using some update rule (such as those outlined in Section 2.4).

Figure 4.1: The Encoder-Decoder Architecture

We shall specifically discuss the encoder-decoder architecture in reference to the problem
of generating a transcription corresponding to the image of some handwritten text. Let
x ∈ RH×W denote the input image matrix of height H and width W . We shall denote
the jth column in x with xj . Note that each xj ∈ RH . Also, let y denote a vector
whose jth element denotes the jth character in the transcription.

4.1 Implementation Using Recurrent Neural Networks
Figure 4.2 shows an encoder decoder network that uses recurrent neural networks
(RNNs) [26].

The encoder and the decoder are two separate RNNs, or its variants such as the LSTM.
The final hidden state of the encoder RNN encodes the entire image in a single vector.
The initial hidden state of the decoder RNN is initialized with this vector. The decoder
is then required to predict the tth output in the transcription at time step t.

At each time step t during training, the decoder is fed the (t − 1)th character of the
transcription and asked to predict the next character. Usually, the first character in
the transcription is a special start token that acts as a starting signal to the decoder.

18

Chapter 4. Encoder-Decoder Architectures 19

Figure 4.2: Implementation of the Encoder-Decoder Architecture Using Recurrent
Neural Networks

Another special token used is the end token. Once the last character is predicted, the
decoder is required to predict this end token at the next time step, indicating that its
done with this input. This technique of feeding the previous correct output at each time
step is known as teacher forcing.

Each character in the vocabulary is assigned a vector. All of these vectors are concate-
nated to produce the so-called embedding matrix. Note that it is this embedding vector
that is fed into the decoder at each time step. The embedding matrix is jointly learned
with the rest of the network’s parameters.

During inference, we do not have access to the true transcription. Hence, teacher forc-
ing cannot be used. So instead, at each time step of the decoder, the character with
the highest probability is selected and fed to the decoder at the next time step.1 Note
however that this creates a distributional mismatch. During training the decoder always
had access to the true character at the previous time step. However, this is not the case
during inference. Hence, during inference the decoder might find itself in an unknown
state space (such as a combination of the input image and a sequence of previous [in-
correct] predictions; something it has never seen during training). Such a distribution
mismatch can lead to an accumulation of errors over time, because each subsequent
output is conditioned on preceding outputs.

Several techniques have been proposed to solve this distributional mismatch problem.
One obvious way of eliminating this problem is to not use teacher forcing at all. However,

1An alternative approach is this: at the first time step select the top k characters with the highest
probability; feed each of these characters to the next time step individually; extend each of these k

characters with all characters in the vocabulary and of all the resulting k|V | sequences select the top k

ones with the highest probability. Repeat this process with all subsequent time steps. The probability
of a sequence can be calculated using Equation 2.12. This decoding strategy is known as beam search.

Chapter 4. Encoder-Decoder Architectures 20

this, in practice, leads to poor results (see for example the results in [27]).

[27] instead proposes a technique called scheduled sampling in which the network ran-
domly decides with probability ϵ at each time step during training whether to use teacher
forcing or to sample a character from the probability distribution at the output of the
previous time step. [27] proposes to decrease ϵ from 1 to 0 in some fashion. Sometimes
ϵ is just set to some constant value less than 1. While scheduled sampling works well
in practice, [28] shows that its underlying objective function leads to an inconsistent
objective function.

[29] introduces the Dataset Aggregation (DAGGER) method to solve the distributional
mismatch problem which repeatedly updates the training set to include the new distri-
butions (sequences) encountered during validation. [30] introduces yet another solution
called professor forcing that trains two networks — one with teacher forcing and the
other without it — in an adversarial fashion.

4.2 Adding an Attention Mechanism
One obvious flaw with encoder-decoder networks is that the encoder has to encode the
entire input sequence into only one vector. For longer input sequences, it might not be
possible to create a useful representation using a single vector only.

One way to solve this problem is to increase the size of this vector. However, this would
only lead to bigger networks and increased training times.

Another method to solve this problem is to recognize the fact that for each prediction,
the decoder needs access to only a small subset of the input sequence. For example, in
order to predict the first character in a handwriting recognition task, the decoder only
needs to look at the first few columns in the image. Attention-based models build upon
this insight by adding another neural network to the existing architecture, that at each
time step decides which part of the image to pay attention to.

4.2.1 Global Attention

[31] proposes a soft-alignment method. Let H ∈ RW×D denote the concatenation
[h0,h1, ...,hW] where hj is the encoder output for xj (see for example 4.2). Here,
D denotes the size of the encoder (the number of units in an RNN). For each step t of
the decoder, we calculate a context vector:

ct =
W∑
j=1

αjthj (4.1)

Each scalar weight αjt (collectively known as the alignments) is computed by:

αjt =
exp(ejt)∑W

k=1 ekt
(4.2)

Chapter 4. Encoder-Decoder Architectures 21

where:
ejt = a(st−1,hj) (4.3)

where st−1 is the previous hidden state of the decoder and a is an alignment model that
is jointly learned with the rest of the network. a can simply be a feed forward neural
network (as in [31]) given by:

a = V T
a fa(W

T
a [st−1;hj] + ba) (4.4)

where Va, Wa and ba are the weights and biases of the alignment model, f is some
non-liner function and [st−1;hj] represents a concatenation of st−1 and hj . The context
vector is then fed to the decoder along with the previous outputs.

Each αjt indicates the relevance of (the encoding of) the jth column of the image to the
prediction that the decoder has to make at time step t.

Note that the alignments at each step t are calculated after the decoder makes the
predictions for that step. Therefore, for the first prediction the decoder needs to rely on
the final hidden state of the encoder (with which its own hidden state is initialized).

This attention mechanism is often called as the Bahdanau attention-mechanism.

[32] proposes a slightly alternative approach. In this approach, the decoder is only fed
its previous output. The output of the decoder at each time step is fed to the alignment
model. The alignment model uses this decoder output and the encoder outputs to
calculate a context vector using Equations 4.1 to 4.3 (except that instead of st−1 we
use st). This context vector and the decoder output at that time step are fed to a feed
forward layer that makes the final decision. Additionally, [32] experiments with two
different alignment models also that are reproduced below:

a = sTt hj (4.5)

a = sTt Wahj (4.6)

4.2.2 Local Attention

Global attention requires the alignment model to process all of the encoder outputs at
any given time step and assign weights to each of them. In contrast, local attention only
selects a subset of the encoder outputs that fall within the window [pt −D, pt +D] at
any time step and uses them to calculate the context vector. In [32] D is determined
empirically, while two different approaches are used to find pt. The monotonic alignment
methods simply sets pt to t (i.e. the current time step of the decoder) where as the
predictive alignment methods calculates pt using:

pt = W sigmoid(vT
p tanh(Wpst)) (4.7)

Chapter 4. Encoder-Decoder Architectures 22

where vp and Wp are parameters to be learned and W is the width of the image. In
order to favor positions near pt each alignment weight αjt is multiplied by:

exp
(
−(j − pt)

2

2σ2

)
(4.8)

where σ is set to D/2.

Chapter 5

N-Gram Language Models

Language models can help increase the accuracy of systems that deal with language (such
as handwritten text recognition systems). The following discussion is mainly drawn from
Chapter 4 of [33].

5.1 The N-Gram Language Model
Assume a large text corpus consisting of V distinct words. Denote a particular sequence
of words [w1, ..., wL] with wL

1 . Using the chain rule, we have:

P (wL
1) =

L∏
k=1

P (wk|wk−1
1) (5.1)

n-gram models estimate the conditional probabilities on the RHS in the equation above.
Specifically:

P (wk|wk−1
1) ≈ P (wk|wk−1

k−n+1) (5.2)

Equation 5.2 essentially approximates the probability of a word appearing in a text
by only taking into account the last n − 1 words. Intuitively, this makes sense for
language models. Words appearing at the beginning of a paragraph hardly ever influence
the occurrence of words at the end of the paragraph. We may estimate these n-gram
conditional probabilities by using:

P (wk|wk−1
k−n+1) =

N(wk
k−n+1)

N(wk−1
k−n+1)

(5.3)

where N(◦) is the number of times ◦ appears in the text corpus. N(◦) is often referred
to as the counts of ◦.

5.2 Perplexity
In order to check how accurate the probabilities calculated in the previous section are,
a metric known as perplexity is often used. The perplexity is always calculated on a

23

Chapter 5. N-Gram Language Models 24

separate test set (that was not used for finding the n-gram probabilities). Let W
′
=

[w
′
1, ..., w

′

L′] denote the test set. The perplexity is given as:

Perplexity(W ′
) = P (w

′
1, ..., w

′

L′)
− 1

L
′ (5.4)

where the RHS can be evaluated using Equation 5.1.

5.3 Smoothing
The naïve n-gram model possesses a serious flaw. The test set might contain a valid
sequence of words that was not present in training corpus — the corpus that was used
to calculate the n-gram probabilities. In such a case, the n-gram model will assign a
zero probability to this sequence of words resulting in the entire probability of the test
set being 0 (as per Equation 5.1). This would mean that we can not calculate the
perplexity on test set (as we can not divide by 0). One way of solving this problem
is to use smoothing. Smoothing removes some probability mass from more frequent
sequences and assigns it sequences that were not present in the training set. We present
some smoothing algorithms below (see [34] for a more detailed analysis including some
more algorithms).

5.3.1 Laplace (Add-One) Smoothing

Laplace smoothing adds 1 to all counts:

P (wk|wk−1
k−n+1) =

N(wk
k−n+1) + 1

N(wk−1
k−n+1) + V

(5.5)

Note that adding V to the denominator is necessary to ensure that the probabilities sum
up to 1.

5.3.2 Backoff and Interpolation

Backoff and interpolation use the idea that if a particular n-gram is absent from the
training corpus, we can approximate its probability from a lower order n-gram. In
backoff, we only ’back-off’ to a lower order estimate in case the higher order n-gram is
missing. In interpolation, we combine all n-gram estimates in some fashion. Note that
in either case we have to ensure that all probabilities sum up to 1.

5.3.3 Kneser-Ney Smoothing

[35] proposes the so-called Kneser-Ney smoothing algorithm. The original algorithm was
backoff which [34] later modified to be interpolated. We first present the interpolated
method. For a bigram model define:

Pcontinuation(wi) =
|{wi−1 : N(wi−1wi) > 0}|

|{(wj−1wj) : N(wj−1wj) > 0}|
(5.6)

Chapter 5. N-Gram Language Models 25

i.e. Pcontinuation(wi) is the probability that wi appears after a new word (or a new
sequence of n − 1 words in the general n-gram case). The Interpolated Kneser-Ney
smoothing equation is:

P (wi|wi−1) =
max(N(wi−1wi)− d, 0)

N(wi−1)
+ λ(wi−1)Pcontinuation(wi) (5.7)

The first term above is the same as in Equation 5.3 except that we discount a constant d
from the numerator. The Kneser-Ney smoothing then reassigns this probability mass via
the second term. Subtracting a constant d from all probabilities has the intuition that
it doesn’t affect n-grams for which we already have a high probability too much. For
n-grams with low probability (i.e. lesser counts) we already have a less reliable estimate
anyways and as such making those probabilities smaller should not have that much of
an adverse effect.

In the second term, λ(wi−1) is defined as:

λ(wi−1) =
d× |{w : N(wi−1wi) > 0}|

N(wi−1)
(5.8)

Note that the numerator in the equation above is the total probability mass subtracted.
Multiplying this with Pcontinuation(wi) essentially assigns wi an additional probability
mass proportional to the number of new contexts it appears in. Finally, the denominator
N(wi−1) ensures that

∑
j P (wj |wi−1) = 1.

The general recursive equation for the Interpolated Kneser-Ney technique is:

P (wi|wi−1
i−n+1) =

max[N(wi
i−n+1)− d, 0]

N(wi−1
i−n+1)

+ λ(wi−1
i−n+1)P (wi|wi−1

i−n+2) (5.9)

The original backoff algorithm is given by:

P (wi|wi−1
i−n+1) =

max(N(wi

i−n+1)−d,0)

N(wi−1
i−n+1)

if N(wi
i−n+1) > 0

λ(wi−1
i−n+1)P (wi|wi−1

i−n+2) if N(wi
i−n+1) = 0

(5.10)

Chapter 6

Optical Character Recognition
Systems

Optical Character Recognition (OCR) typically involves five steps: preprocessing, seg-
mentation, feature extraction, classification and recognition and post-processing. In this
chapter, we present a brief review of the OCR literature.

6.1 Preprocessing
Preprocessing involves a number of steps [36] that help improve the accuracy of later
stages by removing noise and unnecessary details from an image.

Binarization is the process of converting a colored or gray-scale image to a binary image.
In a binary image, all pixels can only take on two values: 0 or 1. One way of doing this
is through Otsu’s method [37] where we assume that an image contains two classes of
pixels and then calculate the optimum threshold that separates them.

Sometimes scanning introduces a skew in images that needs to be corrected. Several
different techniques exist for this purpose (see for e.g [36], [38]).

Other techniques involved in preprocessing include noise removal, background elimi-
nation, removal of black boundaries and extra white spaces, gray-scale normalization,
size-normalization, smoothing and thinning (see for e.g. [36] and [39]).

6.2 Segmentation
Instead of feeding an image of an entire page of handwritten text to some classifier, it
is usually useful to segment it into pieces first. These pieces could be individual lines,
words or ligatures [36]. One way of doing this is through horizontal projection. Pixel
values in each row are summed up. Assuming that 0 corresponds to a white pixel, a
row summing up to zero would indicate a white line. This information can be used to
segment the image into individual lines. Similarly, vertical projection can be used to
segment images of lines into individual words and/or ligatures. However, in the case

26

Chapter 6. Optical Character Recognition Systems 27

of images of handwritten text, this is generally harder (as lines/words/ligatures may
overlap). [36] reviews different segmentation techniques.

6.3 Feature Extraction
Instead of feeding raw images (that might contain noise) to a classifier, one may first
extract information that is relevant to the task-at-hand and only feed in that information.
The goal of feature extraction is to extract this information from raw images.

Approaches to feature extraction include the computation of curvature, slope, end-points
axes ratio, the length variations of strokes, shape context, discrete cosine transform and
discrete wavelet transform and zoning features etc. (see for e.g. [40] and [36]).

However, more recent research does not extract features explicitly and instead feeds raw
images to the classifier (see for e.g. [41] and [42]).

6.4 Recognition
Traditionally, Hidden Markov Models (HMM) were used for the recognition phase (see
[43] for a review of some OCR systems that used HMM). However, recent research uses
deep learning (neural nets) for this purpose.

Depending on the segmentation step, the classifier will either need to recognize images
of either single characters ([44] and [45]) or complete lines ([38] and [46]) or entire
paragraphs [41].

6.5 Post Processing
Once the text in an image has been recognized, additional steps such as spell-checking
and grammar corrections can be carried out to improve the accuracy of the recognition
system. This of course assumes that the text in the image is grammatically correct and
contains valid words.

Chapter 7

Dataset Collection

The performance of a deep neural model is dependent upon the quality of the dataset
it was trained on.

[38] introduces the Urdu Nastaleeq Handwritten Dataset (UNHD). While the UNHD
dataset consists of 10, 000 text lines, only 4, 240 are publicly available which are not
enough to train a robust deep neural network. As a result, we create a new dataset for
the purpose of this thesis. The dataset will be available for further research.1

For this new dataset, 500, 000 text lines were selected from Urdu literature. 10, 000 lines
were picked from these lines in such a way that the ratios of the frequencies of words
remained the same. These lines (after some filtering) were divided into 490 pages, each
consisting of 20 lines. Each page was given a unique 4-digit i.d. and was written by a
distinct writer. Each writer too got a unique 4-digit i.d.

The writers ranged between 15 and 30 years of age, were of both sexes and mostly
belonged to schools, colleges and universities. The writers were given pages with black
lines drawn on them for writing. Red pens with 6 different stroke widths were used for
writing. The writers were instructed to leave one blank line after every line. Writers
usually took 1 to 3 lines to write each printed text line.

Each page was scanned using a flatbed scanner at 300 dots per inch (dpi) and saved
using the .jpg format. Only the red pixels were extracted from each page. This removed
the black lines in the background. The images were then segmented into text lines using
horizontal projection. Each image was assigned a unique 10 digit i.d. of the format
aaaa_bbbb_cc, where aaaa was the i.d. of the writer who wrote them, bbbb was the i.d.
of the 20-line page that the writer wrote and cc was the line number of the writer’s page.

The final dataset contains 15, 164 text lines written by 490 different writers in 6 different
strokes and has 13, 497 trigrams, 1, 674 bigrams and 61 unigrams.

1Contact http://cle.org.pk/ for this dataset.

28

http://cle.org.pk/

Chapter 7. Dataset Collection 29

The dataset is further divided into training and test sets consisting of 13, 351 and 1, 813

images respectively. 440 writers contributed to the training set while 86 contributed to
the test set. 288 images in the test set are of writers who also contributed to the training
set.

Table 7.1 contains some statistics of the images in the dataset.

Height Width
Min Max Mean Min Max Mean

Train 44 328 167.71 65 2509 1859.99
Test 72 291 166.86 104 2439 1818.30

Table 7.1: Statistics of Images in the Dataset

Appendix D shows how the dataset was prepared. Appendix C gives the frequencies of
each character in the dataset according to its positions in its ligatures.

Chapter 8

Experiments

All experiments discussed below were carried out on the Urdu handwritten dataset from
Chapter 7. Figure 8.1 shows the system during the training phase.

Image Preprocessor Classifier Output

Figure 8.1: The System During the Training Process

In this chapter, we only present an outline of the processes in the preprocessor and
classifier stages during training and evaluation. The inference process is discussed in
Chapter 9. The exact details of the system can be found in the configuration files in
Appendix A.

8.1 Generating Labels
8.1.1 Character-Based Approach

In Urdu, each character has a different shape based on their position in a ligature. In
the character-based approach to generating labels, each shape is assigned a different i.d.
(note that in this case this is more of a shape-based approach). Appendix C lists the
shapes in the vocabulary.

8.1.2 Ligature-Based Approach

In this approach, we assign each distinct ligature an i.d. This has the advantage that it
reduces the length of the output sequence. Also, because we are constraining ourselves
to a certain set of valid ligatures, this approach can lead to a lower ligature error rate.
However, there are several drawbacks to this approach. Firstly, the training data might
not contain all possible valid ligatures. Secondly, most ligatures might only occur a few
times, which may prevent the classifier from properly learning their shapes. Thirdly,
during inference an image might contain an invalid ligature. However, we would still
want our classifier to correctly predict this invalid ligature, which is not possible if we
only restrict ourselves to a certain set of ligatures.

30

Chapter 8. Experiments 31

8.2 Accuracy Metric
Levenshtein (edit) distance is the total number of insertions, deletions and substitutions
needed to make two strings equal [47]. We calculate the accuracy of the classifier on a
single example using:

Accuracy =
Levenshtein(prediction, label)

Length of label (8.1)

We average the accuracy over all examples.

8.3 Preprocessor
All images are trimmed to remove any white columns in them. All images are re-sized
to a fixed height. Images are also divided into buckets. The width of all images in a
bucket are padded upto the maximum width of that bucket. Furthermore, all images
are binarized using Otsu’s method.

8.4 Classifiers
We experiment with two different classifiers. Furthermore, we also incorporate an n-gram
language model with the first classifier. In all experiments, we use a character-based
classification approach. The learning rate is decayed exponentially. Table 8.1 gives the
number of trainable parameters of each architecture.

CNN-RNN-CTC 7, 075, 374

Encoder-Decoder 9, 432, 832

Table 8.1: Number of Trainable Parameters

8.4.1 CNN-RNN-CTC Architecture

The preprocessed images are fed to CONV-POOL-ReLU blocks. Each of these blocks
has a convolutional layer, a max-pooling operator and a ReLU activation function in
that order. Some of these blocks use a batch normalization layer at the end. Residual
connections may optionally be added. Appropriate affine transformations are used in
that case. The final output of the CONV-POOL-ReLU block is fed to a recurrent neural
network which is followed by a feed forward layer. The number of hidden units of the
feed forward layer is the size of the vocabulary plus one. The extra unit is needed for the
Connectionist Temporal Classification function, which is the objective function of this
network. Note that as Urdu is read from right to left we flip all images before feeding
them to the classifier.

8.4.2 Language Model

While the classifier is character-based, the language model we use is ligature-based i.e. it
models the probability of a particular ligature following a specific sequence of ligatures.
We use a trigram model with Backoff Kneser-Ney smoothing. We use the same prefix

Chapter 8. Experiments 32

beam search algorithm outlined in [5] except that instead of applying the language model
whenever we encounter a space, we apply it whenever a ligature ends. Note that because
of our character-based approach to generating labels, we can identify which ids signal
the end of a ligature.

In the configuration file in Appendix A.1 ‘alpha’ and ‘beta’ are the same as defined in
[5]. The ‘discard probability’ is the minimum probability that a character must have at
a given time step in order for it to be considered by the decoding algorithm.

8.4.3 Encoder-Decoder Architecture

In this architecture, we first feed the preprocessed images to several CONV-POOL-
ReLU blocks as discussed in Section 8.4.1. We pass on the outputs of these blocks to an
encoder-decoder network. We also incorporate the Bahdanau attention mechanism. In
this case, we do not flip images. We leave it to the classifier to learn the direction of the
script. For scheduled sampling, we use an exponential decaying function. The outputs
of the cross entropy function for all decoder outputs are summed up to give the loss of
the network.

8.5 Results
Table 8.2 shows the results of the experiments.

CNN-RNN-CTC Encoder-Decoder
Greedy Search 88.50 89.52
Beam Search 88.75 90.07

Beam Search + Language Modeling 91.51 -
On English (IAM dataset) [46] 93.80 91.90

Table 8.2: Results

Figure D.1 shows the losses and gradient norms during training.

(a) CNN-RNN-CTC (b) Encoder-Decoder

Figure 8.2: Training Plots

Chapter 8. Experiments 33

Figure 8.3 shows the alignments assigned to an image overtime by the alignment model.
Note that the classifier learns to read from right to left. Appendix B shows how the
attention mechanism works on an image.

Figure 8.3: Visualization of the Attention Mechanism

We train the trigram language model on 10, 000 Urdu text lines and achieve a perplexity
of 47.621 on a held-out (test) set.

Table 8.4 shows the breakdown of the results on the test set.

Accuracy Bin Number of Samples Number of Distinct Writers
Greedy Beam Beam + LM Greedy Beam Beam + LM

100 148 161 428 50 50 71
90 767 770 748 78 79 80
80 579 573 426 84 83 82
70 219 219 133 65 68 57
60 74 71 55 35 33 28
50 19 10 15 10 6 9
40 3 4 4 3 4 3
30 2 3 1 1 2 1
20 2 2 3 1 1 3
10 0 0 0 0 0 0
0 0 0 0 0 0 0

Table 8.3: The CNN-RNN-CTC Architecture on the Test Set

Accuracy Bin Number of Samples Number of Distinct Writers
Greedy Beam Greedy Beam

100 261 278 60 62
90 721 758 79 82
80 516 507 84 84
70 175 161 66 63
60 81 69 42 37
50 35 25 20 16
40 6 2 6 2
30 11 8 7 4
20 3 3 3 3
10 2 0 2 0
0 2 2 2 2

Table 8.4: The Encoder-Decoder Architecture on the Test Set

Chapter 9

Deployment

Figure 9.1 shows the final system after the classifier has been trained.

Image Segmentor Preprocessor

ClassifierRecognized Text

Figure 9.1: The Final System

Note that we add a segmentation step. For segmentation, we use a connected-component
approach. We first smear the image horizontally. As a result, the characters in each
line get physically connected. We then construct boundary boxes around each connected
component. The coordinates of the edges of the boundary boxes are then used to segment
the original image.

The rest of the stages are the same as discussed in previous chapters.

34

Chapter 10

Conclusion and Future Work

We presented a new dataset consisting of Urdu handwritten text lines and their cor-
responding ground truths. This dataset was used to train two deep learning based
architectures. An n-gram language model was also incorporated. The results show that
deep learning-based methods are highly effective in building optical character recognition
systems for Urdu.

A number of improvements may be made in the future.

Firstly, the dataset may be expanded to include, for example, images of multi-lingual
handwritten documents. In cases where some languages are written from right-to-left
and others from left-to-right attention based models will prove to be particularly useful
because of their flexibility in choosing which part of the image to consider at any given
time.

Secondly, one major drawback of the architectures presented is that future decisions
made by the network cannot affect its past decisions. This is the opposite of what the
human mind does, especially in the case of reading.

Thirdly, future work may involve combining the predictions of different networks. This
is because different networks (like human minds) usually learn different things. Some are
good at identifying certain characters while others are good at identifying others. The
main challenge in this regard is that the output sequences produced by these different
networks may not be aligned.

Fourthly, some characters in the dataset have a very low frequency count. As such, the
networks have very little time to properly learn to recognize them. In this regard, the
objective function may be modified in such a way that the network is forced to pay more
attention to the examples of these low frequent characters.

35

Appendix A

Configuration Files

A.1 CNN-RNN-CTC Architecture
"model": "CNN_RNN_CTC",

"char_or_lig": "char",

"save_best": "True",
"restore_best_model": "False",
"early_stopping": "False",

"batch_size": "32",
"buckets": "5",

"image_size": "None, 64",
"image_width_range": "None",
"flip_image": "True",

"optimizer": "adam",

"lr": "0.001",
"anneal_lr": "True",
"anneal_lr_every": "1000",
"anneal_lr_rate": "0.96",

"dropout": "0.2",
"max_grad_norm": "5",
"l2_regularizer_scale": "0.0",

"cnn_num_layers": "7",
"cnn_num_residual_layers": 0,
"cnn_activation": "leaky_relu",
"cnn_num_filters": "32, 64, 128, 128, 256, 256, 512",
"cnn_filter_sizes": "5, 5, 5, 5, 3, 3, 3",
"cnn_strides": "(1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1)",
"cnn_paddings": "SAME, SAME, SAME, SAME, SAME, SAME, SAME, SAME",
"pool_sizes": "(2,2), (1,2), (1,2), (1,2), (1,2), (1,2), (1,1)",
"pool_strides": "(2,2), (1,2), (1,2), (1,2), (1,2), (1,2), (1,1)",
"pool_paddings": "SAME, SAME, SAME, SAME, SAME, SAME, SAME",
"do_batch_norm": "False, False, True, False, False, False, True",

36

Appendix A. Configuration Files 37

"rnn_num_layers": "2",
"rnn_unit_type": "lstm",
"rnn_type": "bi",
"rnn_num_residual_layers": "0",
"rnn_num_units": "512",

For beam search:
"beam_width": "10",

For beam search with language modeling:
"beam_width": "10",
"ngrams": "3",
"alpha": "0.5",
"beta": "4",
"discard_probability": 0.001

A.2 Encoder-Decoder Architecture
"model": "Encoder_Decoder",

"char_or_lig": "char",

"save_best": "True",
"restore_best_model": "False",
"early_stopping": "False",

"batch_size": "32",
"buckets": "5",

"image_size": "None, 64",
"image_width_range": "None",
"flip_image": "False",

"optimizer": "adam",

"lr": "0.001",
"anneal_lr": "True",
"anneal_lr_every": "4000",
"anneal_lr_rate": "0.96",

"dropout": "0.2",
"max_grad_norm": "5",
"l2_regularizer_scale": "0.0",

"cnn_num_layers": "7",
"cnn_num_residual_layers": "0",
"cnn_activation": "leaky_relu",
"cnn_num_filters": "16, 32, 64, 64, 128, 128, 128",
"cnn_filter_sizes": "5, 5, 5, 3, 3, 3, 2",
"cnn_strides": "(1,1), (1,1), (1,1), (1,1), (1,1), (1,1), (1,1)",
"cnn_paddings": "SAME, SAME, SAME, SAME, SAME, SAME, SAME",
"pool_sizes": "(2,2), (1,2), (1,2), (1,2), (1,2), (1,2), (1,1)",
"pool_strides": "(2,2), (1,2), (1,2), (1,2), (1,2), (1,2), (1,1)",
"pool_paddings": "SAME, SAME, SAME, SAME, SAME, SAME, SAME",
"do_batch_norm": "False, True, False, True, False, False, True",

"encoder_num_layers": "2",

Appendix A. Configuration Files 38

"encoder_unit_type": "layer_norm_lstm",
"encoder_type": "bi",
"encoder_num_residual_layers": "0",
"encoder_num_units": "512",

"embed_size": "256",

"use_attention": "True",
"attention_type": "bahdanau",
"attention_num_units": "512",

"pass_hidden_state": "True",
"decoder_num_layers": "2",
"decoder_unit_type": "layer_norm_lstm",
"decoder_num_residual_layers": "0",
"decoder_num_units": "512",

"do_scheduled_sampling": "True",
"initial_not_sampling_prob": "0.80",
"anneal_not_sampling_prob": "True",
"anneal_not_sampling_prob_every": "4000",
"anneal_not_sampling_prob_rate": "0.96",

For beam search:
"beam_width": "10",

Appendix B

Demonstrating Attention

39

Appendix B. Demonstrating Attention 40

Appendix C

Character Frequencies

Character Position Train Test
ص isolated 72 18
ث final 90 19
ظ isolated 92 24
ط final 99 21
خ final 103 14
ض isolated 105 15
ص final 113 20
ّ hijja 115 11
ٹ isolated 125 15
ض final 133 12
چ final 141 17
! isolated 145 24
ج final 146 15
ؓ isolated 156 5
ھ isolated 168 19
ع isolated 173 27
و initial 183 12
ٰ hijja 189 49
ظ initial 195 27
ح final 195 24
(isolated 199 35
گ isolated 201 33
ؐ isolated 201 16
) isolated 202 29
َ hijja 210 27
ٔ isolated 218 15

Character Position Train Test
ش isolated 221 10
؟ isolated 224 29
ث middle 224 45
غ middle 229 29
ع final 234 47
ث initial 235 46
ج isolated 252 33
ء isolated 255 85
: isolated 256 17
ٹ final 260 24
پ middle 283 27
ك isolated 286 21
ق isolated 294 29
ڈ final 296 26
ش final 306 53
گ final 320 32
ف final 327 61
ذ final 348 65
ُ hijja 370 23
ح isolated 371 55
ڑ isolated 373 31
ڈ isolated 394 78
ذ isolated 425 61
ِ hijja 458 76
ض middle 466 48
ق final 483 82

Table C.1: Character Frequencies in Training and Test Sets
Key: initial: the first character of its ligature; final: the final character of its ligature;
middle: between the first and final characters of its ligature; isolated: a one-letter
ligature; hijja (aerab): associated with some character that is part of a ligature (usually

separately written either on the top or the bottom of the character)

41

Appendix C. Character Frequencies 42

Character Position Train Test
ض initial 512 72
ظ middle 522 96
غ initial 536 66
پ isolated 564 81
ھ initial 578 57
ط middle 616 94
خ middle 629 131
ٹ initial 649 43
ف isolated 678 90
ٹ middle 794 98
ف middle 795 112
چ middle 823 83
ص middle 841 175
ب isolated 902 134
ئ middle 907 124
ش middle 921 97
س final 927 122
ح middle 1028 149
ھ final 1114 90
ز final 1120 126
ط initial 1121 176
ڑ final 1165 120
گ middle 1195 124
ب final 1213 169
ج middle 1291 167
ص initial 1320 234
ل isolated 1375 200
ق middle 1380 276
ے isolated 1470 172
م isolated 1575 254
ل final 1576 278
ز isolated 1757 214
ب middle 1765 291
م final 1789 241
ك final 1794 234
چ initial 1875 186
ن final 1905 242
، isolated 1966 255
ع middle 1966 308
ف initial 2002 259
ت isolated 2029 345
خ initial 2030 267
ى isolated 2104 242
ق initial 2119 358
ش initial 2313 294

Character Position Train Test
آ isolated 2335 324
ح initial 2354 406
ع initial 2403 352
ت final 2403 350
ہ isolated 2424 347
' isolated 2479 172
س isolated 2690 416
ن isolated 2762 400
ئ initial 2890 392
س middle 3104 413
ك middle 3260 495
گ initial 3386 361
م middle 3509 478
ں isolated 3604 433
ہ middle 3996 490
د final 4389 581
ت middle 4405 585
ج initial 5051 739
ل middle 5145 726
ل initial 5600 693
ن middle 5624 646
پ initial 5644 681
۔ isolated 6460 710
ہ final 6501 951
د isolated 6517 753
ھ middle 6745 709
ں final 6928 979
ب initial 7892 959
ى initial 8249 1185
س initial 8297 1097
ت initial 9108 1289
و isolated 9962 1321
ن initial 10388 1340
ہ initial 11021 1570
ر isolated 11879 1637
م initial 11916 1596
ى final 13254 1717
ر final 15163 1936
و final 16372 2185
ى middle 16873 2390
ے final 19944 2658
ك initial 21489 2862
ا isolated 21750 3183
ا final 30058 4035

Table C.1: Character Frequencies in Training and Test Sets (Continued)

Appendix D

Dataset Preparation Process

(a) Part of a Page Given to a Writer (b) Page Written by the Writer

(c) After Extracting the Red Pixels (d) After Segmentation

Figure D.1: How the Dataset was Prepared

43

Bibliography

[1] “Urdu,” http://www.omniglot.com/writing/urdu.htm, accessed: 2019-04-08.

[2] “Controversy over number of letters in Urdu alphabet,” https://www.dawn.com/
news/919270, accessed: 2019-04-08.

[3] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist tempo-
ral classification: Labelling unsegmented sequence data with recurrent neural net-
works,” in Proceedings of the 23rd International Conference on Machine Learning,
ser. ICML ’06. New York, NY, USA: ACM, 2006, pp. 369–376.

[4] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber,
“A novel connectionist system for unconstrained handwriting recognition,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 31, no. 5, pp. 855–868, May 2009.

[5] A. L. Maas, A. Y. Hannun, D. Jurafsky, and A. Y. Ng, “First-pass large vocabulary
continuous speech recognition using bi-directional recurrent dnns,” CoRR, vol.
abs/1408.2873, 2014. [Online]. Available: http://arxiv.org/abs/1408.2873

[6] H. Scheidl, S. Fiel, and R. Sablatnig, “Word beam search: A connectionist temporal
classification decoding algorithm,” in 16th International Conference on Frontiers
in Handwriting Recognition. IEEE, 2018, pp. 253–258.

[7] C. Darken, J. Chang, and J. Moody, “Learning rate schedules for faster stochastic
gradient search,” in Neural Networks for Signal Processing II Proceedings of the
1992 IEEE Workshop, Aug 1992, pp. 3–12.

[8] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio,
“Identifying and attacking the saddle point problem in high-dimensional non-convex
optimization,” in Proceedings of the 27th International Conference on Neural In-
formation Processing Systems, ser. NIPS’14, vol. 2. Cambridge, MA, USA: MIT
Press, 2014, pp. 2933–2941.

[9] N. Qian, “On the momentum term in gradient descent learning algorithms,” Neural
Netw., vol. 12, no. 1, pp. 145–151, Jan. 1999.

[10] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learn-
ing and stochastic optimization,” J. Mach. Learn. Res., vol. 12, pp. 2121–2159, Jul.
2011.

44

http://www.omniglot.com/writing/urdu.htm
https://www.dawn.com/news/919270
https://www.dawn.com/news/919270
http://arxiv.org/abs/1408.2873

References 45

[11] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR,
vol. abs/1412.6980, 2015.

[12] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation functions:
Comparison of trends in practice and research for deep learning,” CoRR, vol.
abs/1811.03378, 2018.

[13] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent
neural networks,” in Proceedings of the 30th International Conference on Interna-
tional Conference on Machine Learning, ser. ICML’13, vol. 28. JMLR.org, 2013,
pp. III–1310–III–1318.

[14] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput.,
vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[15] A. Graves, A. Mohamed, and G. E. Hinton, “Speech recognition with deep recurrent
neural networks,” CoRR, vol. abs/1303.5778, 2013.

[16] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” Trans.
Sig. Proc., vol. 45, no. 11, pp. 2673–2681, Nov. 1997.

[17] A. Graves and J. Schmidhuber, “Framewise phoneme classification with bidirec-
tional lstm and other neural network architectures,” Neural Networks, pp. 5–6,
2005.

[18] A. Graves, S. Fernández, and J. Schmidhuber, “Multi-dimensional recurrent neu-
ral networks,” in Artificial Neural Networks – ICANN 2007, J. M. de Sá, L. A.
Alexandre, W. Duch, and D. Mandic, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 549–558.

[19] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[20] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval.
New York, NY, USA: Cambridge University Press, 2008.

[21] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting,” Journal of
Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[22] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in In Proceedings of the International Conference on Artificial
Intelligence and Statistics (AISTATS’10). Society for Artificial Intelligence and
Statistics, 2010.

[23] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift,” in Proceedings of the 32nd International

http://www.deeplearningbook.org

References 46

Conference on International Conference on Machine Learning - Volume 37, ser.
ICML’15. JMLR.org, 2015, pp. 448–456.

[24] L. J. Ba, R. Kiros, and G. E. Hinton, “Layer normalization,” CoRR, vol.
abs/1607.06450, 2016.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016.

[26] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using rnn encoder–decoder for
statistical machine translation,” in Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Doha, Qatar: Association for
Computational Linguistics, Oct. 2014, pp. 1724–1734.

[27] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sampling for sequence
prediction with recurrent neural networks,” in Proceedings of the 28th International
Conference on Neural Information Processing Systems - Volume 1, ser. NIPS’15.
Cambridge, MA, USA: MIT Press, 2015, pp. 1171–1179.

[28] F. Huszar, “How (not) to train your generative model: Scheduled sampling, likeli-
hood, adversary?” CoRR, vol. abs/1511.05101, 2015.

[29] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning and struc-
tured prediction to no-regret online learning,” in Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, ser. Proceedings
of Machine Learning Research, vol. 15. Fort Lauderdale, FL, USA: PMLR, 11–13
Apr 2011, pp. 627–635.

[30] A. Goyal, A. Lamb, Y. Zhang, S. Zhang, A. Courville, and Y. Bengio, “Professor
forcing: A new algorithm for training recurrent networks,” in Proceedings of the 30th
International Conference on Neural Information Processing Systems, ser. NIPS’16.
USA: Curran Associates Inc., 2016, pp. 4608–4616.

[31] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learn-
ing to align and translate,” in ICLR, 2015.

[32] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based
neural machine translation,” in Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing. Lisbon, Portugal: Association for
Computational Linguistics, Sep. 2015, pp. 1412–1421.

[33] D. Jurafsky and J. H. Martin, Speech and Language Processing (2nd Edition).
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2009.

References 47

[34] S. F. Chen and J. Goodman, “An empirical study of smoothing techniques for
language modeling,” in Proceedings of the 34th Annual Meeting on Association for
Computational Linguistics, ser. ACL ’96. Stroudsburg, PA, USA: Association for
Computational Linguistics, 1996, pp. 310–318.

[35] R. Kneser and H. Ney, “Improved backing-off for m-gram language modeling.” in
ICASSP. IEEE Computer Society, 1995, pp. 181–184.

[36] S. Naz, K. Hayat, M. I. Razzak, M. W. Anwar, S. A. Madani, and S. U. Khan, “The
optical character recognition of urdu-like cursive scripts,” Pattern Recogn., vol. 47,
no. 3, pp. 1229–1248, Mar. 2014.

[37] N. Otsu, “A Threshold Selection Method from Gray-level Histograms,” IEEE Trans-
actions on Systems, Man and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979.

[38] S. B. Ahmed, S. Naz, S. Swati, and M. I. Razzak, “Handwritten urdu character
recognition using one-dimensional blstm classifier,” Neural Computing and Appli-
cations, pp. 1–9, 2017.

[39] Y. Alginahi, “Preprocessing techniques in character recognition,” in Character
Recognition, M. Mori, Ed. Rijeka: IntechOpen, 2010, ch. 1. [Online]. Available:
https://doi.org/10.5772/9776

[40] A. Lawgali, Bouridane, M. Angelova, and Z. Ghassemlooy, “Handwritten arabic
character recognition: Which feature extraction method,” International Journal of
Advanced Science and Technology, vol. 34, pp. 1–8, 01 2011.

[41] T. Bluche, J. Louradour, and R. O. Messina, “Scan, attend and read: End-to-end
handwritten paragraph recognition with MDLSTM attention,” in 14th IAPR
International Conference on Document Analysis and Recognition, ICDAR 2017,
Kyoto, Japan, November 9-15, 2017. IEEE, 2017, pp. 1050–1055. [Online].
Available: https://doi.org/10.1109/ICDAR.2017.174

[42] M. Jain, M. Mathew, and C. V. Jawahar, “Unconstrained ocr for urdu using deep
cnn-rnn hybrid networks,” 2017 4th IAPR Asian Conference on Pattern Recognition
(ACPR), pp. 747–752, 2017.

[43] L. M. Lorigo and V. Govindaraju, “Offline arabic handwriting recognition: A sur-
vey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 5, pp. 712–724, May
2006.

[44] A. Elsawy, M. Loey, and H. El-Bakry, “Arabic handwritten characters recognition
using convolutional neural network,” WSEAS TRANSACTIONS on COMPUTER
RESEARCH, vol. 5, pp. 11–19, 01 2017.

[45] A. Sahlol and C. Suen, “A novel method for the recognition of isolated handwritten
arabic characters,” CoRR, vol. abs/1402.6650, 2014.

https://doi.org/10.5772/9776
https://doi.org/10.1109/ICDAR.2017.174

References 48

[46] A. Chowdhury and L. Vig, “An efficient end-to-end neural model for handwritten
text recognition,” in British Machine Vision Conference 2018, BMVC 2018,
Northumbria University, Newcastle, UK, September 3-6, 2018, 2018, p. 202.
[Online]. Available: http://bmvc2018.org/contents/papers/0606.pdf

[47] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions and
reversals,” Soviet Physics Doklady, vol. 10, pp. 707–710, February 1966.

http://bmvc2018.org/contents/papers/0606.pdf

	Acknowledgments
	List of Figures
	List of Tables
	Abbreviations
	Abstract
	1 Introduction
	2 Supervised Learning for Classification
	2.1 Probabilistic Classifiers
	2.2 The Cross-Entropy Function
	2.3 Sequence-to-Sequence Problems
	2.3.1 Connectionist Temporal Classification (CTC)
	2.3.2 Decoding Strategies for CTC
	2.3.3 Encoder-Decoder Architecture

	2.4 Training Classifiers
	2.4.1 Gradient Descent
	2.4.2 Momentum
	2.4.3 Adagrad
	2.4.4 Adam

	3 Artificial Neural Networks
	3.1 A Single Neuron
	3.2 Stacking Neurons
	3.3 Training Neural Networks
	3.4 Recurrent Neural Networks (RNNs)
	3.5 Convolutional Layers
	3.6 Pooling Layers
	3.7 Techniques Used for Training Neural Networks
	3.7.1 L1 and L2 Regularizations
	3.7.2 Dropout
	3.7.3 Early Stopping
	3.7.4 Restoring the Best Model
	3.7.5 Decaying the Learning Rate
	3.7.6 Bucketing
	3.7.7 Xavier Weight Initialization
	3.7.8 Batch Normalization
	3.7.9 Layer Normalization
	3.7.10 Residual Connections
	3.7.11 Clipping Gradients

	4 Encoder-Decoder Architectures
	4.1 Implementation Using Recurrent Neural Networks
	4.2 Adding an Attention Mechanism
	4.2.1 Global Attention
	4.2.2 Local Attention

	5 N-Gram Language Models
	5.1 The N-Gram Language Model
	5.2 Perplexity
	5.3 Smoothing
	5.3.1 Laplace (Add-One) Smoothing
	5.3.2 Backoff and Interpolation
	5.3.3 Kneser-Ney Smoothing

	6 Optical Character Recognition Systems
	6.1 Preprocessing
	6.2 Segmentation
	6.3 Feature Extraction
	6.4 Recognition
	6.5 Post Processing

	7 Dataset Collection
	8 Experiments
	8.1 Generating Labels
	8.1.1 Character-Based Approach
	8.1.2 Ligature-Based Approach

	8.2 Accuracy Metric
	8.3 Preprocessor
	8.4 Classifiers
	8.4.1 CNN-RNN-CTC Architecture
	8.4.2 Language Model
	8.4.3 Encoder-Decoder Architecture

	8.5 Results

	9 Deployment
	10 Conclusion and Future Work
	A Configuration Files
	A.1 CNN-RNN-CTC Architecture
	A.2 Encoder-Decoder Architecture

	B Demonstrating Attention
	C Character Frequencies
	D Dataset Preparation Process

